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Examples of Applications

Virtual Prototyping

Physically-based simulation
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Other Uses of Collision Detection

§ Robotics: path planning
(piano mover's problem)

§ Medical training simulators

§ Rendering of force feedback
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Collision Detection Within Simulations

§ Main loop:

Move objects

Check collisions

Handle collisions (e.g.,  compute penalty forces)

§ Collisions pose two different problems:

1. Collision detection

2. Collision handling (e.g., physically-based simulation, or visualization)

§ In this chapter: only collision detection
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Definitions

§ Given

§ The detection problem:
“P and Q collide“   :

§ The construction problem:
compute

§ For polygonal objects we define collisions as follows:

P,Q collide

§ The games community often has a different definition of "collision"

P Q

x

R
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Classes of Objects

§ Convex

§ Closed and simple
(no self-penetrations)

§ Polygon soups

§ Not necessarily closed

§ Duplicate polygons

§ Coplanar polygons

§ Self-penetrations

§ Degenerate cardigans

§ Holes

§ Deformable

Polygon soup

Simple & closed

Convex
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Why is Collision Detection so Hard?

1. All-pairs weakness:

2. Discrete time steps:

3. Efficient computation
of proximity / penetration:
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Importance of the Performance of Collision Detection

naïve algorithm
(test all pairs of polygons)

clever algorithm
(use bbox hierarchy)

Conclusion: the performance of the algorithm for collision detection 
determines (often) the overall performance of the simulation!

In many simulations, the coll.det. part takes 60-90 % of the overall time
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Requirements on Collision Detection

§ Handle a large class of objects

§ Lots of moving objects (1000s in some cases)

§ Very high performance, so that a physically-based simulation can  
do many iterations per frame (at least 2x 100,000 polygons in <1 
millisec)

§ Return a contact point ("witness") in case of collision

§ Optionally: return all intersection points

§ Auxiliary data structures should not be too large (<2x memory
usage of originial data)

§ Preprocessing for these auxiliary data structures should not take too 
long, so that it can be done at startup time (< 5sec / object)
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The Collision Detection Pipeline

Broad phaseNarrow phase

Set transform.
in scene graph

Callback

(pairs of 
coll. obj's)
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The Collision Interest Matrix

§ Interest in collisions is specific to different applications/modules: 

§ Not all modules in an application are interested in all possible collisions;

§ Some pairs of objects collide all the time, some can never collide;

§ Goal: prevent unnecessary collision tests 
Þ Collision Interest Matrix

§ The elements in this matrix comprise:

§ Flag  for collision detection

§ Additional info that needs to be stored 
from frame to frame for each pair for certain
algorithms ( e.g., the separating plane)

§ Callbacks in die Module

1 2 3 4 5 6 7 8Obj
1
2
3
4
5
6
7
8

x
x

x
x

xx

x
xxxx
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Methods for the Broad Phase

§ Broad phase = one or more filtering step

§ Goal: quickly filter pairs of objects that cannot intersect because they 
are too far away from each other

§ Standard approach:  

§ Enclose each object within a bounding box (bbox) 

§ Compare the 2 bboxes for a given pair of objects

§ Assumption: n objects are moving

ØBrute-force method needs to compare O(n2) bboxes

§ Goal: determine neighbors more efficiently

Ø3D grid, sweep plane techniques ("sweep and prune"), feature
tracking on convex hulls, etc.
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The 3D Grid

1. Partition the "universe" by  a 3D grid
2. Objects are considered neighbors, if they 

occupy the same cell
3. Determine cell occupancy by bbox
4. When objects move → update grid
§ Neighbor-finding = find all cells that contain 

more than one obj
§ Data structure here: hash table (!)

§ Collision in hash table → probably neighbor

The trade-off:
§ Fewer cells = larger cells

Ø Distant objects are still "neighbors"

§ More cells =  smaller cells
Ø Objects occupy more cells

Ø Effort for updating increases

§ Rule of thumb: cell size ≈ avg obj diameter

Total time

# cells along
each dimension
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sort the X coordinates of all boxes

start with the leftmost box

keep a list of active boxes

loop over x-coords (= left/right box borders):

if current box border is the left side (= "opening"):

check this box against all boxes in the active list

add this box to the list of active boxes

else (= "closing"):

remove this box from the list of active boxes

The Plane Sweep Technique (aka Sweep and Prune)

§ The idea:
sweep plane through space 
perpendicular to the X axis

§ The algorithm:
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Temporal Coherence

§ Observation:
Two consecutive images in a sequence differ only by very little (usually).

ØTerminology: temporal coherence (a.k.a. frame-to-frame coherence)
§ Examples:

§ Motion of a camera

§ Motion of objects in a film / animation

§ Applications:
§ Computer Vision (e.g. tracking of markers)

§ MPEG

§ Collision detection

§ Ray-tracing of animations (e.g. using kinetic data structures)

§ Algorithms based on frame-to-frame coherence are called 
“incremental”, sometimes “dynamic” or “online” (albeit the latter is
the wrong term)
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Convex Objects

§ Definition of “convex polyhedron”:

§ A condition for "non-collision": 
P and Q are "linearly separable" :⇔

(“P is completely on one side of H, 
Q completely on the other side”)

x

y

P

Q

Separating plane H

9 half-space H : P ✓ H ^ Q ✓ H
c

P ⇢ R3 convex ,
8x , y 2 P : xy ⇢ P ,

P =
\

i=1...n

Hi ,Hi = half-spaces
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The "Separating Planes" Algorithm

§ The idea: utilize temporal coherence →
if Et was a separating plane between P and Q at time t, then the 
new separating plane Et+1 is probably not very "far" from Et
(perhaps it is even the same)

Et

Et+1
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load Et = separating plane between P & Q at time t

E := Et

repeat max n times

if exists on the back side of E:

rot./transl. E such that v is now on the front side of E

if exists on the front side of E:

rot./transl. E such that v is now on the back side of E

if there are no vertices on the "wrong" side of E, resp.:

return "no collision"

if there are still vertices on the "wrong" side of E:

return "collision"   {could be wrong}

save Et+1 := E   for the next frame

Et

Et+1

v 2 vertices(P)

v 2 vertices(Q)

For details on the "rot./transl. E" step → see perceptron learning algorithm
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How to Find a Vertex on the "Wrong" Side Quickly

§ The brute-force method:
test all v whether

§ Observation:

1. f is linear, 

2. P is convex Þ f(x) has 
(usually) exactly one minimum 
over all points x on the surface of P

3.

§ The algorithm (steepest descent on the surface w.r.t. f):

§ Start with an arbitrary vertex v

§ Walk to the neighbor v’ of v for  which

§ Stop if there is no neighbor v’ of v for  which

p

n

E P

v*
�1 v� : f (v�) = min

f (v) = (v � p)·n > 0

f (v0) = min. (among all neighbors)

f (v0) < f (v)
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Properties of this Algorithm

+Expected running time is in O(1)!
The algo exploits frame-to-frame coherence:
if the objects move only very little, then the algo just checks 
whether the old separating plane is still a separating plane;
if the separating plane has to be moved, then the algo is often 
finished after a few iterations.

+Works even for deformable objects, so long as they stay convex

– Works only for convex objects

– Could return the wrong answer if P and Q are extremely close but 
not intersecting (bias)

§ Research question: can you find an un-biased (deterministic) variant?



G. Zachmann 37Collision DetectionVirtual Reality 31 January 2018WS

Visualization
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Closest Feature Tracking

§ Idea:

§ Maintain the minimal distance between a pair of objects

§ Which is realized by one point on the surface of each object

§ If the objects move continuously, then those points move
continuously on the surface of their objects

§ The algorithm is based on the following methods:

§ Voronoi diagrams

§ The “closest features” lemma

Optional
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Voronoi Diagrams for Point Sets

§ Given a set of points                 , called sites (or generators)

§ Definition of a Voronoi region/cell :

§ Definition of Voronoi diagrams:
The Voronoi diagram 
over a set of points S is
the union of all Voronoi regions 
over the points in S.

§ induces a partition of the 
plane into Voronoi edges, 
Voronoi nodes, and Voronoi regions

§ Interaktive Demo: http://web.cs.uni-bonn.de/I/GeomLab/VoroGlide/

Voronoi 
region 
w.r.t. pi

pi

VD(S)

VD(S)

V (pi) := {p 2 R2 | 8j 6= i : ||p� pi || < ||p� pj ||}

Optional
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Voronoi Diagrams over Sets of Points, Edges, Polygons

§ Voronoi diagrams can be defined analogously in 3D (and higher 
dimensions)

§ What if the generators are not points but edges / polygons?

§ Definition of a Voronoi cell is still the same:
The Voronoi region of an edge/polygon := all points in space that 
are closer to "their" generator than to any other

§ Example in 2D:

Voronoi region 
induced by
a vertex

Voronoi region 
induced by an edge

Voronoi generators

Optional
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Outer Voronoi Regions Generated by a Polyhedron

The external 
Voronoi regions of …
(a) faces 
(b) edges
(c) a single edge
(d) vertices

Outer Voronoi 
regions for convex 
polyhedra can be 
constructed very 
easily! 
(We won't need 
inner Voronoi 
regions.)

Optional
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Closest Features

§ Definition Feature fP :=  a vertex, edge, polygon of polyhedron P.

§ Definition "Closest Feature":
Let fP and fQ be two features on polyhedra P and Q, resp., and let 
p, q be points on fP and fQ , resp., that realize the minimal 
distance between P and Q, i.e.

Then fP and fQ are called "closest features".

§ The "closest feature" lemma:
Let V(f) denote the Voronoi region
generated by feature f; let p and q be 
points on the surface of P and Q realizing 
the minimal distance.  Then

fP, fQ are closest features Û p is in V(fQ) ,  q is in V(fP) .

p
q fP

fQ

Optional
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Example

q =  fQ (a vertex)

p = fP (an edge) 

Q

P
p

Optional
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The Algorithm (Another Kind of a Steepest Descent)

Start with two arbitrary features fP, fQ on P and Q, resp.

while  ( fP, fQ ) are not (yet) closest features  and  dist( fP, fQ ) > 0 :

if (fP,fQ) has been considered already:
return “collision” (b/c we've hit a cycle)

compute p and q that realize the distance between fP and fQ

if p Î V(q) und  q Î V(p) :
return “no collision”, (fP,fQ) are the closest features

if p lies on the "wrong" side of V(q) :

fP := the feature on that "other side" of V(q) 

do the same for q, if q Ï V(p)

if dist( fP, fQ ) > 0 :

return "no collision"

else

return "collision"

Notice: in case of collision, some features 
are inside the other object, but we did not 
compute Voronoi regions inside objects!
→ hence the chance for cycles

Optional
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Animation of the Algorithm

P

Q

Start 

Startf1
Q

f1 
P

d1

f2 
P

f2
Q

d2f3
P

f3
Qd3

d4

f4
P

f4
Q

Optional
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Some Remarks

§ A little question to make you think:
Actually, we don't really need the Voronoi diagram!
(but with a Voronoi diagram, the algorithm is faster)

§ The running time (in each frame) depends on the "degree" of 
temporal coherence

§ Better initialization by using a lookup table:

§ Partition a surrounding sphere by a grid

§ Put each feature in each 
grid cell that it covers when 
propjected onto the sphere

§ Connect the two centers 
of a pair of objets 
by a line segment

§ Initialize the algorithm by the features hit by that line

Optional
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Movie

UNC-CH

Optional
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The Minkowski Sum

§ Hermann Minkowski (1864 – 1909),
German mathematician and physicist

§ Definition (Minkowski Sum):
Let A and B be subsets of a vector space;
the Minkowski sum of A and B is defined as 

§ Analogously, we define the Minkowski difference:

§ Clearly, the connection between Minkowski sum and difference:

§ Applications: computer graphics, computer vision, linear 
optimization, path planning in robotics, ...

A� B = {a + b | a ⇥ A, b ⇥ B}

A⇥ B = {a� b | a ⇤ A, b ⇤ B}

A⇤ B = A⇥ (�B)

Gabriel Zachmann
Optional
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Some Simple Properties

§ Commutative:

§ Associative:

§ Distributive w.r.t. set union:

§ Invariant against translation:

A� (B � C ) = (A� B)� C

A� B = B � A

T (A)� B = T (A� B)

A� (B [ C ) = (A� B) [ (A� C )

Gabriel Zachmann
Optional
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§ Intuitive "computation" of the Minkowski sum/difference:

§ Analogous construction of Minkowski difference:

Warning: the yellow polygon
in the animation shows the
Minkowsi sum modulo(!) 
possible translations!

Gabriel Zachmann
Optional
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Visualizations of Simple Examples

Fig. 3. Minkowski sum of a ball and a cube. The boundary consists
of segments of spheres and cylinders and planar patches.

notion of the convolution of two (not necessarily convex) objects has been
introduced 2 .

We consider two regular surfaces A and B in three–dimensional space, which
are given by parametric representations a(u, v) and b(s, t) with parameter
domains (u, v) ∈ ΩA ⊆ R2 and (s, t) ∈ ΩB ⊂ R2, respectively.

Definition 7 The convolution surface of two surfaces A and B is the set of
points

A ⋆ B = { a + b | a ∈ A,b ∈ B and M⃗(a) ∥ N⃗(b) },

where M⃗(a) and N⃗(b) are the normal vectors of A and B at the points a ∈ A
and b ∈ B.

The sum of the coordinate vectors is computed only for those points whose
normal vectors are parallel. The definition requires differentiability and regu-
larity of the input surfaces A and B, since otherwise normal vectors do not
exist. A more general definition – which is beyond the scope of this paper –
could be given by considering ‘completed’ normal fields.

While Definition 7 uses normal vectors, the convolution surface A ⋆ B is in-
variant under affine transformations of the objects A and B. This is due to
the fact that affine mappings preserve the parallelism of the tangent planes.

Note that there is a close relationship between convolution surfaces and Min-
kowski sums: the boundary of the Minkowski sum of two sets A, B is contained
in convolution surface of the two boundary surfaces,

∂(A⊕ B) ⊆ (∂A) ⋆ (∂B) (22)

2 This notion should not be confused with the convolution of two functions f and
g, which represents roughly spoken, the overlap of f and a reversed and translated
version of g.

10

Minkowski sum of a ball and a cube 

Gabriel Zachmann
Optional
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Minkowski sum of cube and cone, only the cone is rotating

Minkowski sum of cube and cone, both are translating

Gabriel Zachmann
Optional
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The Complexity of the Minkowski Sum (in 2D, without proofs)

§ Let A and B be polygons with n and m vertices, resp.:

§ If both A and B are convex,then             is convex, too, and has 
complexity

§ If only B is convex, then             has complexity

§ If neither is convex, then            has complexity

§ Algorithmic complexity of the computation of             :

§ If A and B are convex, then             can be computed in time 

§ If only B is convex, then             can be computed in 
randomized time

§ If neither is convex, then             can be computed in time

A� B

A� B

A� B

A� B

A� B

A� B

O(m + n)

A� B

Gabriel Zachmann
Optional
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An Intersection Test for Two Convex Objects using Minkowski Sums

§ Translate both objects so 
that the coordinate system's 
origin 0 is inside B

§ Compute the Minkowski 
difference

§ A and B intersect ⇔

§ Example where an 
intersection occurs:

0 ⇥ A� B

Gabriel Zachmann
Optional
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Hierarchical Collision Detection

§ The standard approach for "polygon 
soups"

§ Algorithmic technique:
divide & conquer

BP

BQ

BP
1

BP
2

BQ
1

BQ
2
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The Bounding Volume Hierarchy (BVH)

§ Constructive defintion of a bounding volume hierarchy:

1. Enclose all polygons, P, in a bounding volume BV(P)

2. Partition P into subsets P1, ..., Pn

3. Rekursively construct a BVH for each Pi
and put them as children of P in the tree

§ Typical arity = 2 or 4

B
B1

B2

B3

B

B1 B2 B3

B31B32

B31
B32
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§ Visualizations of different 
levels of some BVHs:



G. Zachmann 62Collision DetectionVirtual Reality 31 January 2018WS

The General Hierarchical Collision Detection Algo

§ Simultaneous traversal
of two BVHs:

F5 G4 G5F4

F7 G6 G7F6

D7 E6 E7D6

E4D4 D5 E5

A1

B2 B3 C2 C3

E F GD

CB

A

5 6 74

32

1

Resulting, conceptual(!) Bounding Volume Test Tree (BVTT)

traverse( node X, node Y ):
if X,Y do not overlap:

return
if X,Y are leaves:

check polygons
else

for all children pairs:
traverse( Xi, Yj )
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A Simple Running Time Estimation

§ Best-case: 

§ Extremely simple average-case estimation: 
§ Let P[k] = probability that exactly k children pairs overlap, k Î [0,…,4]

§ Assumption: all events are equally likely, each subtree has ½ of the polygons

§ Expected running time:

§ In praxi: running time is better/worse depending on degree of overlap

Path through the 
Bounding Volume Test Tree (BVTT)

T (n) = 1
16 ·0 + 4

16 ·T (n
2) + 6

16 ·2T (n
2) + 4

16 ·3T (n
2) + 1

16 ·4T (n
2)

T (n) = 2T (n
2) � O

�
n
⇥

P[k] =

✓
4

k

◆
/16 , P[0] =

1

16

Gabriel Zachmann
Optional
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Different Kinds of Bounding Volumes

Requirements (for collision detection):

§ Very fast overlap test → "simple" BVs

§ Even if BVs have been translated/rotated

§ Little overlap among BVs on the same level in a BVH (i.e., if you 
want to cover the whole space with the BVs, there should be as 
little overlap as possible) → "tight BVs"
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Different Kinds of Bounding Volumes

Box, AABB (R*-trees)
[Beckmann, Kriegel, et al., 1990]

Sphere
[Hubbard, 1996]

k-DOP / Slabs
[Zachmann, 1998]Spherical  shell

[Manocha, 1997]

Prism
[Barequet, et al., 1996]

OBB (oriented  bounding box)
[Gottschalk, et al., 1996]

Cylinder
[Weghorst et al., 1985]

Convex hull
[Lin et. al., 2001]

Intersection of
several BVs
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The Wheel of Re-Invention

§ OBB-Trees: have been proposed already in 1981 by Dana Ballard
for bounding 2D curves, except they called it "strip trees"

§ AABB hierarchies: have been invented(?) in the 80-ies in the 
spatial data bases community, except they call them "R-tree", or 
"R*-tree", or "X-tree", etc.
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Digression: the Wheel of Fortune (Rad der Fortuna)

Codex BuranusBoccaccio De Casibus Virorum Illustrium Paris: 1467
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Relationship Between Kind of BV and Running Time

§ In case of rigid collision detection (BVH construction can be 
neglected):

NV = number of BV overlap tests
CV = cost of one BV overlap test
NP = number of intersection tests of primitives (e.g., triangles)
CP = cost of one intersection test of two primitives 

§ In case of deformable objects (BVH must be updated):

NU / CU = number/cost of a BV update

§ As the kind of BV gets tighter, NV (and, to some degree, NP) 
decreases, but CV and (usually) CU increases

T = NVCV + NPCP

T = NVCV + NPCP + NUCU
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The Intersection Test for Oriented Bounding Boxes (OBB)

§ The "separating plane" lemma
(just a different wording of the "separating axis" lemma):
Two convex polyhedra A and B do not overlap  Û
there is an axis (line) in space so that the projections of A and B
onto that axis do not overlap.
This axis is called the separating axis.

§ Lemma "Separating Axis Test" (SAT):
Let A and B be two convex 3D polyhedra.
If there is a separating plane, then there is also a separting plane 
that is either parallel to one side of A, or parallel to one side of B, 
or parallel to one edge of A and one edge of B simultaneously.
[Gottschalk, Lin, Manocha; 1996]
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Proof of the SAT Lemma

1. Assumption: A and B are disjoint

2. Consider the Minkowski sum

3. All faces of C are either parallel to one face of 
A, or to one face of B, or to one edge of A and 
one of B (the latter cannot be seen in 2D)

4. C is convex

5. Therefore:

6.

7. (i.e., 0 is outside some Hi )

8. That Hi defines the separating plane; the line 
perpendicular to Hi is the separating axis

A

C

C

0

Hi

⇤i : 0 ⇥� Hi

C = A B

A \ B = ? , 0 62 C

B

Gabriel Zachmann
Optional
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Actually Computing the SAT for OBBs

§ W.l.o.g.: compute everything in the coordinate frame of OBB A

§ A is defined by:  center c, axes A1, A2, A3 , and extents a1, a2, a3, resp.

§ B's position relative to A
is defined by rot. R and transl. T

§ In the coord. frame of A:
Bi are the columns of R

§ Let L be a line in space; 
then A and B overlap, 
if

§ Remark: L = normal to the separating plane

§ According to the lemma, we need to check only a few special lines

§ With boxes, that number of special lines = 15

T

L

A
A2

A1

T·L

rA

B
B1

B2

rB

Gabriel Zachmann
Optional
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§ Example:

§ We need to compute:                                    (and similarly rB)

§ For instance, the 2nd term of the sum is:

§ In general, we have one test of the following form for each of the 
15 axes:

T

L

A
A2

A1

T·L

rA

B
B1

B2

rBSince we compute everything 
in A's coord. frame
® A3 is 3rd unit vector, and

B2 is 2ns column of R

Gabriel Zachmann
Optional
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Discretely Oriented Polytopes (k-DOPs)

§ Definition of k-DOPs:
Choose k fixed vectors              , with k even,
and bi = - bi+ k/2  .
We call these vectors generating vectors
(or just generators).

A k-DOP is a volume defined by
the intersection of k half-spaces:

§ A k-DOP is completely described by

b1

b2

b3

b4

b5

b6

b7

b8

Gabriel Zachmann
Optional
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§ The overlap test for two (axis-aligned) k-DOPs:

i.e., it is just k/2 interval tests

§ Note: this is just
a generalization of the
simple AABB overlap test

"Slab"

b1

b2

b3
b4

b5

b6
b7

b8

b4

b8

D1 \ D2 = ? ,

9i = 1, ..,
k

2
:
h
d1
i , d

1
i+ k

2

i
\
h
d2
i , d

2
i+ k

2

i
= ?

Gabriel Zachmann
Optional
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§ Computation of a k-DOP, given a polygon soup with vertices V :

§

§

§ For each i = 1, .., k, compute 

b1

b2

b3
b4

b5

b6

b7

b8

V = {v0, . . . , vn}

di = max
j=0,...,n

{vj ·bi}

Gabriel Zachmann
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Some Properties of k-DOPs

§ AABBs are special DOPs

§ The overlap test takes time              , k = number of orientations

§ With growing k, the convex hull can be approximated arbitrarily 

precise:

2D: k = 4
3D: k = 6

2D: k = 8
3D: k = 14

k = 18 k = 26

Gabriel Zachmann
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The Overlap Test for Rotated k-DOPs

§ The idea: enclose an "oriented" DOP by a new axis-aligned one:

§ The object's orientation is given by rotation R & translation T

§ The axis-aligned DOP D' = (d'1, …, d'k)  can be computed as follows 
(without proof):

with

§ The correspondence jil is identical for all DOPs in the same hierarchy 
(thus, it can be precomputed)

§ Complexity: O(k)
- Compare this to a SAT-based overlap test

d 0
i = bi

0

@
cj i1
cj i2
cj i3

1

A
�1 0

@
dj i1
dj i2
dj i3

1

A+ biT ,

cj = bjR
�1

Optional
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Restricted Boxtrees (a Variant of kd-Trees)

§ Restricted Boxtrees are a 
combination of kd-trees and AABB 
trees:

§ For defining the children of a node B:
for the left child, split off a portion of 
the "right" part of the box B; 
for the right child of B, split off a 
portion of the left part of B

§ Memory usage: 1 float, 1 axis ID, 1 
pointer (= 9 bytes)

§ Other names for the same DS: 

§ Bounding Interval Hierarchy (BIH)

§ Spatial kd-tree (SKD-Tree)

splitting planes

cl

cu

x

y

upper child

lower child
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§ Overlap tests by "re-alignment" (i.e., enclosing the non-axis-
aligned box in an axis-aligned one, exploiting the special 
structure of restricted boxtrees): 

12 FLOPs  (8.5 with a little trick)

§ Compare this to
§ SAT:  82 FLOPs
§ SAT lite:  24 FLOPs
§ Sphere test:  29 FLOPs

s

cX
X

cY

Y

Gabriel Zachmann
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Performance

D
oor lock (BM

W
)

Car (courtesy VW
)
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The Construction of BV Hierarchies

§ Obviously: 
if the BVH is bad → collision detection has a bad performance

§ The general algorithm for BVH construction: top-down

1. Compute the BV enclosing the set of polygons

2. Partition the set of polygons

3. Recursively compute a BVH for each subset

§ The essential question: the splitting criterion?

§ Guiding principle: the expected cost of collision detection 
incured by a particular split

Gabriel Zachmann
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§ Goal: estimation of P(Xi,Yj)

§ Our tool: the Minkowski sum

§ Reminder:

§ Therefore, the probability is:

§ Conclusion: for a good BVH (for coll.det.) minimize the total 
volume of the children of each node

X1

Y1

X

Y

Y1

0

X1 � Y1

X � Y

Xi ⇧ Yj = � ⇥ 0 ⌅⇤ Xi � Yj

P(Xi ,Yj) =
# “good” cases

# all possible cases

=
vol(Xi  Yj)

vol(X  Y )
=

vol(Xi � Yj)

vol(X � Y )
⇡ vol(Xi) + vol(Yj)

vol(X ) + vol(Y )
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Usual Algorithm for Constructing a BVH

1. Find good orientation for a "good" 
splitting plane using PCA

2. Find the minimum of the total volume by 
a sweep of the splitting plane along that 
axis

§ Complexity of that plane-sweep algorithm:

§ Assumption: splits are not too uneven, i.e.,
a fraction of α / (1-α) polygons goes into the
left/right subtree, α not "too small"

T (n) = n log n + T (↵n) + T ((1� ↵)n) 2 O
�
n log2 n

�
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Coll.Det. Algorithm Depends on Object Representation

§ Example: Voxmap-Pointshell

§ Objects are represented by point shell and by a 
voxel grid

§ The fundamental operation:
does a point hit a black voxel?

§ Problems:

§ What to do in case of non-closed objects?

§ Memory consumption for all the voxels!

- Hierarchy might help, but also slows coll.det. down

§ Collision detection is not exact (b/c of
discretization)

P

Q
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Inner Sphere Trees: the Basic Idea

§ Challenge: compute proximity, i.e., 
distance or measure of penetration

§ Don't approximate an object from
the outside;  instead, approximate it

§ from the inside ,

§ with non-overlapping spheres, and

§ with as little empty volume as possible

ØSphere packing

§ Build sphere hierarchy on top of
inner spheres

Conceptual 
image only!
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Computation of Sphere Packings

§ Have a long history …

§ Has many applications, besides collision detection:

Johannes Kepler 
(1571 – 1630)

ArchitectureRadio surgery Discrete element method
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§ Our requirements / variety of sphere packings:

§ Non-overlapping

§ Arbitrary radii

§ Must work for any kind of container (not just boxes)

§ Optimization according to some criteria, e.g. number of spheres

§ No algorithm yet for that → our approach:

§ Find inner Voronoi nodes of container object

- (See course "Computational Geometry for CG")

- In our case, use approximation by iterative algorithm

§ Place spheres

§ Compute new Voronoi nodes of object plus spheres
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Visualization of Our Algorithm 

Candidate
Voronoi node
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Results

0             100             200           300             400            500
Nr of spheres / 1000
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Our Algorithm can be Parallelized for the GPU
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Performance of Construction of Sphere Packing

Nvidia Geforce GTX 480

0                   20                    40                    60                     80                100
Nr of spheres / 1000
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Construction of Hierarchy Over Sphere Packing

§ Based on clustering method 
known in machine learning 
(batch neural gas clustering)

§ Bears some resemblance
to k-means

§ We can assign "importance" 
to spheres

§ Easily parallelizable 
on the GPU

§ Naturally generalizes to 
higher tree degrees 
(out-degree of 4 -8 seems 
optimal)

w1

w2

Gabriel Zachmann
Optional



G. Zachmann 95Collision DetectionVirtual Reality 31 January 2018WS

§ BNG hierarchy construction on CPU has complexity of

§ Parallelization of BNG reduces complexity to

O
�
n log n

�

O
�
log2 n

�

Construction time in seconds

0               20               40                60               80            100
Nr of spheres / 1000

30

20

10

0

CPU

GPU

Geforce GTX 780 
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Examples



G. Zachmann 97Collision DetectionVirtual Reality 31 January 2018WS

Proximity / Penetration Query Using ISTs

§ Works by the standard 
simultaneous traversal of BVHs

§ First algo that can compute both 
minimal distance or intersection 
volume with one unified 
algorithm

§ Can compute forces and torques

§ Which can be proven to be 
continuous



G. Zachmann 98Collision DetectionVirtual Reality 31 January 2018WS

Computation Timings for the Intersection Volume

Running time (avg / max)

M
ill

is
ec
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Parallel Computation Times for Intersection on GPU

Simulation Frame Number

Ti
m

e 
/ 
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ill
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Number of spheres / 1000

M
ax
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e 
/ 
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Penalty Forces for Simulation/Force-Feedback

§ Accumulate sphere-sphere 
interaction forces:

§ Linear force:

§ Torque:

§ Forces/torques an be proven to be continuous

fblue =
X

fbluei j

sj si
ni

Cm

Pij

⌧ blue =
X

⌧ bluei j

⌧ bluei j = (Pij � Cm)⇥ fij

fbluei j = Vol(s redj \ sbluei )·nblue
i
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Application: Multi-User Haptic Workspace

12 moving objects ; 3.5M triangles ; 1 kHz simulation rate ; intersection volume ≈ 1-3 msec
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Master / Bachelor Thesis Topics

§ Perform collision detection using machine learning

§ Use deep learning, or GLVQ (ask Barbara)

§ For riigid objects first, then deformable, or continuous collision detection


