
Virtual Reality &
Physically-Based Simulation
Collision Detection

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 3Collision DetectionVirtual Reality 31 January 2018WS

Examples of Applications

Virtual Prototyping

Physically-based simulation

G. Zachmann 4Collision DetectionVirtual Reality 31 January 2018WS

Other Uses of Collision Detection

§ Robotics: path planning
(piano mover's problem)

§ Medical training simulators

§ Rendering of force feedback

G. Zachmann 6Collision DetectionVirtual Reality 31 January 2018WS

Collision Detection Within Simulations

§ Main loop:

Move objects

Check collisions

Handle collisions (e.g., compute penalty forces)

§ Collisions pose two different problems:

1. Collision detection

2. Collision handling (e.g., physically-based simulation, or visualization)

§ In this chapter: only collision detection

G. Zachmann 7Collision DetectionVirtual Reality 31 January 2018WS

Definitions

§ Given

§ The detection problem:
“P and Q collide“ :

§ The construction problem:
compute

§ For polygonal objects we define collisions as follows:

P,Q collide

§ The games community often has a different definition of "collision"

P Q

x

R

G. Zachmann 9Collision DetectionVirtual Reality 31 January 2018WS

Classes of Objects

§ Convex

§ Closed and simple
(no self-penetrations)

§ Polygon soups

§ Not necessarily closed

§ Duplicate polygons

§ Coplanar polygons

§ Self-penetrations

§ Degenerate cardigans

§ Holes

§ Deformable

Polygon soup

Simple & closed

Convex

G. Zachmann 10Collision DetectionVirtual Reality 31 January 2018WS

Why is Collision Detection so Hard?

1. All-pairs weakness:

2. Discrete time steps:

3. Efficient computation
of proximity / penetration:

G. Zachmann 11Collision DetectionVirtual Reality 31 January 2018WS

G. Zachmann 12Collision DetectionVirtual Reality 31 January 2018WS

Importance of the Performance of Collision Detection

naïve algorithm
(test all pairs of polygons)

clever algorithm
(use bbox hierarchy)

Conclusion: the performance of the algorithm for collision detection
determines (often) the overall performance of the simulation!

In many simulations, the coll.det. part takes 60-90 % of the overall time

G. Zachmann 13Collision DetectionVirtual Reality 31 January 2018WS

Requirements on Collision Detection

§ Handle a large class of objects

§ Lots of moving objects (1000s in some cases)

§ Very high performance, so that a physically-based simulation can
do many iterations per frame (at least 2x 100,000 polygons in <1
millisec)

§ Return a contact point ("witness") in case of collision

§ Optionally: return all intersection points

§ Auxiliary data structures should not be too large (<2x memory
usage of originial data)

§ Preprocessing for these auxiliary data structures should not take too
long, so that it can be done at startup time (< 5sec / object)

G. Zachmann 14Collision DetectionVirtual Reality 31 January 2018WS

The Collision Detection Pipeline

Broad phaseNarrow phase

Set transform.
in scene graph

Callback

(pairs of
coll. obj's)

(p
ai

rs
 o

f p
ot

en
tia

lly

co
lli

di
ng

 o
bj

ec
ts

)

(p
ai

rs
 o

f p
ot

en
tia

lly

co
lli

di
ng

 o
bj

ec
ts

)

(p
ai

rs
 o

f a
ct

ua
lly

co

lli
di

ng
 o

bj
ec

ts
)

G. Zachmann 15Collision DetectionVirtual Reality 31 January 2018WS

The Collision Interest Matrix

§ Interest in collisions is specific to different applications/modules:

§ Not all modules in an application are interested in all possible collisions;

§ Some pairs of objects collide all the time, some can never collide;

§ Goal: prevent unnecessary collision tests
Þ Collision Interest Matrix

§ The elements in this matrix comprise:

§ Flag for collision detection

§ Additional info that needs to be stored
from frame to frame for each pair for certain
algorithms (e.g., the separating plane)

§ Callbacks in die Module

1 2 3 4 5 6 7 8Obj
1
2
3
4
5
6
7
8

x
x

x
x

xx

x
xxxx

G. Zachmann 16Collision DetectionVirtual Reality 31 January 2018WS

Methods for the Broad Phase

§ Broad phase = one or more filtering step

§ Goal: quickly filter pairs of objects that cannot intersect because they
are too far away from each other

§ Standard approach:

§ Enclose each object within a bounding box (bbox)

§ Compare the 2 bboxes for a given pair of objects

§ Assumption: n objects are moving

ØBrute-force method needs to compare O(n2) bboxes

§ Goal: determine neighbors more efficiently

Ø3D grid, sweep plane techniques ("sweep and prune"), feature
tracking on convex hulls, etc.

G. Zachmann 17Collision DetectionVirtual Reality 31 January 2018WS

The 3D Grid

1. Partition the "universe" by a 3D grid
2. Objects are considered neighbors, if they

occupy the same cell
3. Determine cell occupancy by bbox
4. When objects move → update grid
§ Neighbor-finding = find all cells that contain

more than one obj
§ Data structure here: hash table (!)

§ Collision in hash table → probably neighbor

The trade-off:
§ Fewer cells = larger cells

Ø Distant objects are still "neighbors"

§ More cells = smaller cells
Ø Objects occupy more cells

Ø Effort for updating increases

§ Rule of thumb: cell size ≈ avg obj diameter

Total time

cells along
each dimension

G. Zachmann 18Collision DetectionVirtual Reality 31 January 2018WS

sort the X coordinates of all boxes

start with the leftmost box

keep a list of active boxes

loop over x-coords (= left/right box borders):

if current box border is the left side (= "opening"):

check this box against all boxes in the active list

add this box to the list of active boxes

else (= "closing"):

remove this box from the list of active boxes

The Plane Sweep Technique (aka Sweep and Prune)

§ The idea:
sweep plane through space
perpendicular to the X axis

§ The algorithm:

G. Zachmann 30Collision DetectionVirtual Reality 31 January 2018WS

Temporal Coherence

§ Observation:
Two consecutive images in a sequence differ only by very little (usually).

ØTerminology: temporal coherence (a.k.a. frame-to-frame coherence)
§ Examples:

§ Motion of a camera

§ Motion of objects in a film / animation

§ Applications:
§ Computer Vision (e.g. tracking of markers)

§ MPEG

§ Collision detection

§ Ray-tracing of animations (e.g. using kinetic data structures)

§ Algorithms based on frame-to-frame coherence are called
“incremental”, sometimes “dynamic” or “online” (albeit the latter is
the wrong term)

G. Zachmann 31Collision DetectionVirtual Reality 31 January 2018WS

Convex Objects

§ Definition of “convex polyhedron”:

§ A condition for "non-collision":
P and Q are "linearly separable" :⇔

(“P is completely on one side of H,
Q completely on the other side”)

x

y

P

Q

Separating plane H

9 half-space H : P ✓ H ^ Q ✓ H
c

P ⇢ R3 convex ,
8x , y 2 P : xy ⇢ P ,

P =
\

i=1...n

Hi ,Hi = half-spaces

G. Zachmann 33Collision DetectionVirtual Reality 31 January 2018WS

The "Separating Planes" Algorithm

§ The idea: utilize temporal coherence →
if Et was a separating plane between P and Q at time t, then the
new separating plane Et+1 is probably not very "far" from Et
(perhaps it is even the same)

Et

Et+1

G. Zachmann 34Collision DetectionVirtual Reality 31 January 2018WS

load Et = separating plane between P & Q at time t

E := Et

repeat max n times

if exists on the back side of E:

rot./transl. E such that v is now on the front side of E

if exists on the front side of E:

rot./transl. E such that v is now on the back side of E

if there are no vertices on the "wrong" side of E, resp.:

return "no collision"

if there are still vertices on the "wrong" side of E:

return "collision" {could be wrong}

save Et+1 := E for the next frame

Et

Et+1

v 2 vertices(P)

v 2 vertices(Q)

For details on the "rot./transl. E" step → see perceptron learning algorithm

G. Zachmann 35Collision DetectionVirtual Reality 31 January 2018WS

How to Find a Vertex on the "Wrong" Side Quickly

§ The brute-force method:
test all v whether

§ Observation:

1. f is linear,

2. P is convex Þ f(x) has
(usually) exactly one minimum
over all points x on the surface of P

3.

§ The algorithm (steepest descent on the surface w.r.t. f):

§ Start with an arbitrary vertex v

§ Walk to the neighbor v’ of v for which

§ Stop if there is no neighbor v’ of v for which

p

n

E P

v*
�1 v� : f (v�) = min

f (v) = (v � p)·n > 0

f (v0) = min. (among all neighbors)

f (v0) < f (v)

G. Zachmann 36Collision DetectionVirtual Reality 31 January 2018WS

Properties of this Algorithm

+Expected running time is in O(1)!
The algo exploits frame-to-frame coherence:
if the objects move only very little, then the algo just checks
whether the old separating plane is still a separating plane;
if the separating plane has to be moved, then the algo is often
finished after a few iterations.

+Works even for deformable objects, so long as they stay convex

– Works only for convex objects

– Could return the wrong answer if P and Q are extremely close but
not intersecting (bias)

§ Research question: can you find an un-biased (deterministic) variant?

G. Zachmann 37Collision DetectionVirtual Reality 31 January 2018WS

Visualization

G. Zachmann 38Collision DetectionVirtual Reality 31 January 2018WS

Closest Feature Tracking

§ Idea:

§ Maintain the minimal distance between a pair of objects

§ Which is realized by one point on the surface of each object

§ If the objects move continuously, then those points move
continuously on the surface of their objects

§ The algorithm is based on the following methods:

§ Voronoi diagrams

§ The “closest features” lemma

Optional

G. Zachmann 39Collision DetectionVirtual Reality 31 January 2018WS

Voronoi Diagrams for Point Sets

§ Given a set of points , called sites (or generators)

§ Definition of a Voronoi region/cell :

§ Definition of Voronoi diagrams:
The Voronoi diagram
over a set of points S is
the union of all Voronoi regions
over the points in S.

§ induces a partition of the
plane into Voronoi edges,
Voronoi nodes, and Voronoi regions

§ Interaktive Demo: http://web.cs.uni-bonn.de/I/GeomLab/VoroGlide/

Voronoi
region
w.r.t. pi

pi

VD(S)

VD(S)

V (pi) := {p 2 R2 | 8j 6= i : ||p� pi || < ||p� pj ||}

Optional

G. Zachmann 40Collision DetectionVirtual Reality 31 January 2018WS

Voronoi Diagrams over Sets of Points, Edges, Polygons

§ Voronoi diagrams can be defined analogously in 3D (and higher
dimensions)

§ What if the generators are not points but edges / polygons?

§ Definition of a Voronoi cell is still the same:
The Voronoi region of an edge/polygon := all points in space that
are closer to "their" generator than to any other

§ Example in 2D:

Voronoi region
induced by
a vertex

Voronoi region
induced by an edge

Voronoi generators

Optional

G. Zachmann 41Collision DetectionVirtual Reality 31 January 2018WS

Outer Voronoi Regions Generated by a Polyhedron

The external
Voronoi regions of …
(a) faces
(b) edges
(c) a single edge
(d) vertices

Outer Voronoi
regions for convex
polyhedra can be
constructed very
easily!
(We won't need
inner Voronoi
regions.)

Optional

G. Zachmann 42Collision DetectionVirtual Reality 31 January 2018WS

Closest Features

§ Definition Feature fP := a vertex, edge, polygon of polyhedron P.

§ Definition "Closest Feature":
Let fP and fQ be two features on polyhedra P and Q, resp., and let
p, q be points on fP and fQ , resp., that realize the minimal
distance between P and Q, i.e.

Then fP and fQ are called "closest features".

§ The "closest feature" lemma:
Let V(f) denote the Voronoi region
generated by feature f; let p and q be
points on the surface of P and Q realizing
the minimal distance. Then

fP, fQ are closest features Û p is in V(fQ) , q is in V(fP) .

p
q fP

fQ

Optional

G. Zachmann 43Collision DetectionVirtual Reality 31 January 2018WS

Example

q = fQ (a vertex)

p = fP (an edge)

Q

P
p

Optional

G. Zachmann 44Collision DetectionVirtual Reality 31 January 2018WS

The Algorithm (Another Kind of a Steepest Descent)

Start with two arbitrary features fP, fQ on P and Q, resp.

while (fP, fQ) are not (yet) closest features and dist(fP, fQ) > 0 :

if (fP,fQ) has been considered already:
return “collision” (b/c we've hit a cycle)

compute p and q that realize the distance between fP and fQ

if p Î V(q) und q Î V(p) :
return “no collision”, (fP,fQ) are the closest features

if p lies on the "wrong" side of V(q) :

fP := the feature on that "other side" of V(q)

do the same for q, if q Ï V(p)

if dist(fP, fQ) > 0 :

return "no collision"

else

return "collision"

Notice: in case of collision, some features
are inside the other object, but we did not
compute Voronoi regions inside objects!
→ hence the chance for cycles

Optional

G. Zachmann 45Collision DetectionVirtual Reality 31 January 2018WS

Animation of the Algorithm

P

Q

Start

Startf1
Q

f1
P

d1

f2
P

f2
Q

d2f3
P

f3
Qd3

d4

f4
P

f4
Q

Optional

G. Zachmann 46Collision DetectionVirtual Reality 31 January 2018WS

Some Remarks

§ A little question to make you think:
Actually, we don't really need the Voronoi diagram!
(but with a Voronoi diagram, the algorithm is faster)

§ The running time (in each frame) depends on the "degree" of
temporal coherence

§ Better initialization by using a lookup table:

§ Partition a surrounding sphere by a grid

§ Put each feature in each
grid cell that it covers when
propjected onto the sphere

§ Connect the two centers
of a pair of objets
by a line segment

§ Initialize the algorithm by the features hit by that line

Optional

G. Zachmann 47Collision DetectionVirtual Reality 31 January 2018WS

Movie

UNC-CH

Optional

G. Zachmann 48Collision DetectionVirtual Reality 31 January 2018WS

The Minkowski Sum

§ Hermann Minkowski (1864 – 1909),
German mathematician and physicist

§ Definition (Minkowski Sum):
Let A and B be subsets of a vector space;
the Minkowski sum of A and B is defined as

§ Analogously, we define the Minkowski difference:

§ Clearly, the connection between Minkowski sum and difference:

§ Applications: computer graphics, computer vision, linear
optimization, path planning in robotics, ...

A� B = {a + b | a ⇥ A, b ⇥ B}

A⇥ B = {a� b | a ⇤ A, b ⇤ B}

A⇤ B = A⇥ (�B)

Gabriel Zachmann
Optional

G. Zachmann 49Collision DetectionVirtual Reality 31 January 2018WS

Some Simple Properties

§ Commutative:

§ Associative:

§ Distributive w.r.t. set union:

§ Invariant against translation:

A� (B � C) = (A� B)� C

A� B = B � A

T (A)� B = T (A� B)

A� (B [C) = (A� B) [(A� C)

Gabriel Zachmann
Optional

G. Zachmann 50Collision DetectionVirtual Reality 31 January 2018WS

§ Intuitive "computation" of the Minkowski sum/difference:

§ Analogous construction of Minkowski difference:

Warning: the yellow polygon
in the animation shows the
Minkowsi sum modulo(!)
possible translations!

Gabriel Zachmann
Optional

G. Zachmann 52Collision DetectionVirtual Reality 31 January 2018WS

Visualizations of Simple Examples

Fig. 3. Minkowski sum of a ball and a cube. The boundary consists
of segments of spheres and cylinders and planar patches.

notion of the convolution of two (not necessarily convex) objects has been
introduced 2 .

We consider two regular surfaces A and B in three–dimensional space, which
are given by parametric representations a(u, v) and b(s, t) with parameter
domains (u, v) ∈ ΩA ⊆ R2 and (s, t) ∈ ΩB ⊂ R2, respectively.

Definition 7 The convolution surface of two surfaces A and B is the set of
points

A ⋆ B = { a + b | a ∈ A,b ∈ B and M⃗(a) ∥ N⃗(b) },

where M⃗(a) and N⃗(b) are the normal vectors of A and B at the points a ∈ A
and b ∈ B.

The sum of the coordinate vectors is computed only for those points whose
normal vectors are parallel. The definition requires differentiability and regu-
larity of the input surfaces A and B, since otherwise normal vectors do not
exist. A more general definition – which is beyond the scope of this paper –
could be given by considering ‘completed’ normal fields.

While Definition 7 uses normal vectors, the convolution surface A ⋆ B is in-
variant under affine transformations of the objects A and B. This is due to
the fact that affine mappings preserve the parallelism of the tangent planes.

Note that there is a close relationship between convolution surfaces and Min-
kowski sums: the boundary of the Minkowski sum of two sets A, B is contained
in convolution surface of the two boundary surfaces,

∂(A⊕ B) ⊆ (∂A) ⋆ (∂B) (22)

2 This notion should not be confused with the convolution of two functions f and
g, which represents roughly spoken, the overlap of f and a reversed and translated
version of g.

10

Minkowski sum of a ball and a cube

Gabriel Zachmann
Optional

G. Zachmann 53Collision DetectionVirtual Reality 31 January 2018WS

Minkowski sum of cube and cone, only the cone is rotating

Minkowski sum of cube and cone, both are translating

Gabriel Zachmann
Optional

G. Zachmann 54Collision DetectionVirtual Reality 31 January 2018WS

The Complexity of the Minkowski Sum (in 2D, without proofs)

§ Let A and B be polygons with n and m vertices, resp.:

§ If both A and B are convex,then is convex, too, and has
complexity

§ If only B is convex, then has complexity

§ If neither is convex, then has complexity

§ Algorithmic complexity of the computation of :

§ If A and B are convex, then can be computed in time

§ If only B is convex, then can be computed in
randomized time

§ If neither is convex, then can be computed in time

A� B

A� B

A� B

A� B

A� B

A� B

O(m + n)

A� B

Gabriel Zachmann
Optional

G. Zachmann 55Collision DetectionVirtual Reality 31 January 2018WS

An Intersection Test for Two Convex Objects using Minkowski Sums

§ Translate both objects so
that the coordinate system's
origin 0 is inside B

§ Compute the Minkowski
difference

§ A and B intersect ⇔

§ Example where an
intersection occurs:

0 ⇥ A� B

Gabriel Zachmann
Optional

G. Zachmann 59Collision DetectionVirtual Reality 31 January 2018WS

Hierarchical Collision Detection

§ The standard approach for "polygon
soups"

§ Algorithmic technique:
divide & conquer

BP

BQ

BP
1

BP
2

BQ
1

BQ
2

G. Zachmann 60Collision DetectionVirtual Reality 31 January 2018WS

The Bounding Volume Hierarchy (BVH)

§ Constructive defintion of a bounding volume hierarchy:

1. Enclose all polygons, P, in a bounding volume BV(P)

2. Partition P into subsets P1, ..., Pn

3. Rekursively construct a BVH for each Pi
and put them as children of P in the tree

§ Typical arity = 2 or 4

B
B1

B2

B3

B

B1 B2 B3

B31B32

B31
B32

G. Zachmann 61Collision DetectionVirtual Reality 31 January 2018WS

§ Visualizations of different
levels of some BVHs:

G. Zachmann 62Collision DetectionVirtual Reality 31 January 2018WS

The General Hierarchical Collision Detection Algo

§ Simultaneous traversal
of two BVHs:

F5 G4 G5F4

F7 G6 G7F6

D7 E6 E7D6

E4D4 D5 E5

A1

B2 B3 C2 C3

E F GD

CB

A

5 6 74

32

1

Resulting, conceptual(!) Bounding Volume Test Tree (BVTT)

traverse(node X, node Y):
if X,Y do not overlap:

return
if X,Y are leaves:

check polygons
else

for all children pairs:
traverse(Xi, Yj)

G. Zachmann 63Collision DetectionVirtual Reality 31 January 2018WS

A Simple Running Time Estimation

§ Best-case:

§ Extremely simple average-case estimation:
§ Let P[k] = probability that exactly k children pairs overlap, k Î [0,…,4]

§ Assumption: all events are equally likely, each subtree has ½ of the polygons

§ Expected running time:

§ In praxi: running time is better/worse depending on degree of overlap

Path through the
Bounding Volume Test Tree (BVTT)

T (n) = 1
16 ·0 + 4

16 ·T (n
2) + 6

16 ·2T (n
2) + 4

16 ·3T (n
2) + 1

16 ·4T (n
2)

T (n) = 2T (n
2) � O

�
n
⇥

P[k] =

✓
4

k

◆
/16 , P[0] =

1

16

Gabriel Zachmann
Optional

G. Zachmann 64Collision DetectionVirtual Reality 31 January 2018WS

Different Kinds of Bounding Volumes

Requirements (for collision detection):

§ Very fast overlap test → "simple" BVs

§ Even if BVs have been translated/rotated

§ Little overlap among BVs on the same level in a BVH (i.e., if you
want to cover the whole space with the BVs, there should be as
little overlap as possible) → "tight BVs"

G. Zachmann 65Collision DetectionVirtual Reality 31 January 2018WS

Different Kinds of Bounding Volumes

Box, AABB (R*-trees)
[Beckmann, Kriegel, et al., 1990]

Sphere
[Hubbard, 1996]

k-DOP / Slabs
[Zachmann, 1998]Spherical shell

[Manocha, 1997]

Prism
[Barequet, et al., 1996]

OBB (oriented bounding box)
[Gottschalk, et al., 1996]

Cylinder
[Weghorst et al., 1985]

Convex hull
[Lin et. al., 2001]

Intersection of
several BVs

G. Zachmann 66Collision DetectionVirtual Reality 31 January 2018WS

The Wheel of Re-Invention

§ OBB-Trees: have been proposed already in 1981 by Dana Ballard
for bounding 2D curves, except they called it "strip trees"

§ AABB hierarchies: have been invented(?) in the 80-ies in the
spatial data bases community, except they call them "R-tree", or
"R*-tree", or "X-tree", etc.

G. Zachmann 67Collision DetectionVirtual Reality 31 January 2018WS

Digression: the Wheel of Fortune (Rad der Fortuna)

Codex BuranusBoccaccio De Casibus Virorum Illustrium Paris: 1467

G. Zachmann 69Collision DetectionVirtual Reality 31 January 2018WS

Relationship Between Kind of BV and Running Time

§ In case of rigid collision detection (BVH construction can be
neglected):

NV = number of BV overlap tests
CV = cost of one BV overlap test
NP = number of intersection tests of primitives (e.g., triangles)
CP = cost of one intersection test of two primitives

§ In case of deformable objects (BVH must be updated):

NU / CU = number/cost of a BV update

§ As the kind of BV gets tighter, NV (and, to some degree, NP)
decreases, but CV and (usually) CU increases

T = NVCV + NPCP

T = NVCV + NPCP + NUCU

G. Zachmann 70Collision DetectionVirtual Reality 31 January 2018WS

The Intersection Test for Oriented Bounding Boxes (OBB)

§ The "separating plane" lemma
(just a different wording of the "separating axis" lemma):
Two convex polyhedra A and B do not overlap Û
there is an axis (line) in space so that the projections of A and B
onto that axis do not overlap.
This axis is called the separating axis.

§ Lemma "Separating Axis Test" (SAT):
Let A and B be two convex 3D polyhedra.
If there is a separating plane, then there is also a separting plane
that is either parallel to one side of A, or parallel to one side of B,
or parallel to one edge of A and one edge of B simultaneously.
[Gottschalk, Lin, Manocha; 1996]

G. Zachmann 71Collision DetectionVirtual Reality 31 January 2018WS

Proof of the SAT Lemma

1. Assumption: A and B are disjoint

2. Consider the Minkowski sum

3. All faces of C are either parallel to one face of
A, or to one face of B, or to one edge of A and
one of B (the latter cannot be seen in 2D)

4. C is convex

5. Therefore:

6.

7. (i.e., 0 is outside some Hi)

8. That Hi defines the separating plane; the line
perpendicular to Hi is the separating axis

A

C

C

0

Hi

⇤i : 0 ⇥� Hi

C = A B

A \ B = ? , 0 62 C

B

Gabriel Zachmann
Optional

G. Zachmann 72Collision DetectionVirtual Reality 31 January 2018WS

Actually Computing the SAT for OBBs

§ W.l.o.g.: compute everything in the coordinate frame of OBB A

§ A is defined by: center c, axes A1, A2, A3 , and extents a1, a2, a3, resp.

§ B's position relative to A
is defined by rot. R and transl. T

§ In the coord. frame of A:
Bi are the columns of R

§ Let L be a line in space;
then A and B overlap,
if

§ Remark: L = normal to the separating plane

§ According to the lemma, we need to check only a few special lines

§ With boxes, that number of special lines = 15

T

L

A
A2

A1

T·L

rA

B
B1

B2

rB

Gabriel Zachmann
Optional

G. Zachmann 73Collision DetectionVirtual Reality 31 January 2018WS

§ Example:

§ We need to compute: (and similarly rB)

§ For instance, the 2nd term of the sum is:

§ In general, we have one test of the following form for each of the
15 axes:

T

L

A
A2

A1

T·L

rA

B
B1

B2

rBSince we compute everything
in A's coord. frame
® A3 is 3rd unit vector, and

B2 is 2ns column of R

Gabriel Zachmann
Optional

G. Zachmann 74Collision DetectionVirtual Reality 31 January 2018WS

Discretely Oriented Polytopes (k-DOPs)

§ Definition of k-DOPs:
Choose k fixed vectors , with k even,
and bi = - bi+ k/2 .
We call these vectors generating vectors
(or just generators).

A k-DOP is a volume defined by
the intersection of k half-spaces:

§ A k-DOP is completely described by

b1

b2

b3

b4

b5

b6

b7

b8

Gabriel Zachmann
Optional

G. Zachmann 75Collision DetectionVirtual Reality 31 January 2018WS

§ The overlap test for two (axis-aligned) k-DOPs:

i.e., it is just k/2 interval tests

§ Note: this is just
a generalization of the
simple AABB overlap test

"Slab"

b1

b2

b3
b4

b5

b6
b7

b8

b4

b8

D1 \ D2 = ? ,

9i = 1, ..,
k

2
:
h
d1
i , d

1
i+ k

2

i
\
h
d2
i , d

2
i+ k

2

i
= ?

Gabriel Zachmann
Optional

G. Zachmann 76Collision DetectionVirtual Reality 31 January 2018WS

§ Computation of a k-DOP, given a polygon soup with vertices V :

§

§

§ For each i = 1, .., k, compute

b1

b2

b3
b4

b5

b6

b7

b8

V = {v0, . . . , vn}

di = max
j=0,...,n

{vj ·bi}

Gabriel Zachmann
Optional

G. Zachmann 77Collision DetectionVirtual Reality 31 January 2018WS

Some Properties of k-DOPs

§ AABBs are special DOPs

§ The overlap test takes time , k = number of orientations

§ With growing k, the convex hull can be approximated arbitrarily

precise:

2D: k = 4
3D: k = 6

2D: k = 8
3D: k = 14

k = 18 k = 26

Gabriel Zachmann
Optional

G. Zachmann 78Collision DetectionVirtual Reality 31 January 2018WS

The Overlap Test for Rotated k-DOPs

§ The idea: enclose an "oriented" DOP by a new axis-aligned one:

§ The object's orientation is given by rotation R & translation T

§ The axis-aligned DOP D' = (d'1, …, d'k) can be computed as follows
(without proof):

with

§ The correspondence jil is identical for all DOPs in the same hierarchy
(thus, it can be precomputed)

§ Complexity: O(k)
- Compare this to a SAT-based overlap test

d 0
i = bi

0

@
cj i1
cj i2
cj i3

1

A
�1 0

@
dj i1
dj i2
dj i3

1

A+ biT ,

cj = bjR
�1

Optional

G. Zachmann 79Collision DetectionVirtual Reality 31 January 2018WS

Restricted Boxtrees (a Variant of kd-Trees)

§ Restricted Boxtrees are a
combination of kd-trees and AABB
trees:

§ For defining the children of a node B:
for the left child, split off a portion of
the "right" part of the box B;
for the right child of B, split off a
portion of the left part of B

§ Memory usage: 1 float, 1 axis ID, 1
pointer (= 9 bytes)

§ Other names for the same DS:

§ Bounding Interval Hierarchy (BIH)

§ Spatial kd-tree (SKD-Tree)

splitting planes

cl

cu

x

y

upper child

lower child

Gabriel Zachmann
Optional

G. Zachmann 80Collision DetectionVirtual Reality 31 January 2018WS

§ Overlap tests by "re-alignment" (i.e., enclosing the non-axis-
aligned box in an axis-aligned one, exploiting the special
structure of restricted boxtrees):

12 FLOPs (8.5 with a little trick)

§ Compare this to
§ SAT: 82 FLOPs
§ SAT lite: 24 FLOPs
§ Sphere test: 29 FLOPs

s

cX
X

cY

Y

Gabriel Zachmann
Optional

G. Zachmann 81Collision DetectionVirtual Reality 31 January 2018WS

Performance

D
oor lock (BM

W
)

Car (courtesy VW
)

0

0.4

0.8

1.2

1.6

2

0 20 40 60

tim
e

/ m
ill

is
ec

pgons / 1000

car

Restr. Boxtree
DOP tree

0

0.2

0.4

0.6

0 50 100 150 200 250

tim
e

/ m
ill

is
ec

pgons / 1000

lock

DOP tree
Restr. Boxtree

Gabriel Zachmann
Optional

G. Zachmann 82Collision DetectionVirtual Reality 31 January 2018WS

The Construction of BV Hierarchies

§ Obviously:
if the BVH is bad → collision detection has a bad performance

§ The general algorithm for BVH construction: top-down

1. Compute the BV enclosing the set of polygons

2. Partition the set of polygons

3. Recursively compute a BVH for each subset

§ The essential question: the splitting criterion?

§ Guiding principle: the expected cost of collision detection
incured by a particular split

Gabriel Zachmann
Optional

G. Zachmann 83Collision DetectionVirtual Reality 31 January 2018WS

§ Goal: estimation of P(Xi,Yj)

§ Our tool: the Minkowski sum

§ Reminder:

§ Therefore, the probability is:

§ Conclusion: for a good BVH (for coll.det.) minimize the total
volume of the children of each node

X1

Y1

X

Y

Y1

0

X1 � Y1

X � Y

Xi ⇧ Yj = � ⇥ 0 ⌅⇤ Xi � Yj

P(Xi ,Yj) =
“good” cases

all possible cases

=
vol(Xi Yj)

vol(X Y)
=

vol(Xi � Yj)

vol(X � Y)
⇡ vol(Xi) + vol(Yj)

vol(X) + vol(Y)

Gabriel Zachmann
Optional

G. Zachmann 84Collision DetectionVirtual Reality 31 January 2018WS

Usual Algorithm for Constructing a BVH

1. Find good orientation for a "good"
splitting plane using PCA

2. Find the minimum of the total volume by
a sweep of the splitting plane along that
axis

§ Complexity of that plane-sweep algorithm:

§ Assumption: splits are not too uneven, i.e.,
a fraction of α / (1-α) polygons goes into the
left/right subtree, α not "too small"

T (n) = n log n + T (↵n) + T ((1� ↵)n) 2 O
�
n log2 n

�

Gabriel Zachmann
Optional

G. Zachmann 86Collision DetectionVirtual Reality 31 January 2018WS

Coll.Det. Algorithm Depends on Object Representation

§ Example: Voxmap-Pointshell

§ Objects are represented by point shell and by a
voxel grid

§ The fundamental operation:
does a point hit a black voxel?

§ Problems:

§ What to do in case of non-closed objects?

§ Memory consumption for all the voxels!

- Hierarchy might help, but also slows coll.det. down

§ Collision detection is not exact (b/c of
discretization)

P

Q

Gabriel Zachmann
Optional

G. Zachmann 87Collision DetectionVirtual Reality 31 January 2018WS

Inner Sphere Trees: the Basic Idea

§ Challenge: compute proximity, i.e.,
distance or measure of penetration

§ Don't approximate an object from
the outside; instead, approximate it

§ from the inside ,

§ with non-overlapping spheres, and

§ with as little empty volume as possible

ØSphere packing

§ Build sphere hierarchy on top of
inner spheres

Conceptual
image only!

G. Zachmann 88Collision DetectionVirtual Reality 31 January 2018WS

Computation of Sphere Packings

§ Have a long history …

§ Has many applications, besides collision detection:

Johannes Kepler
(1571 – 1630)

ArchitectureRadio surgery Discrete element method

G. Zachmann 89Collision DetectionVirtual Reality 31 January 2018WS

§ Our requirements / variety of sphere packings:

§ Non-overlapping

§ Arbitrary radii

§ Must work for any kind of container (not just boxes)

§ Optimization according to some criteria, e.g. number of spheres

§ No algorithm yet for that → our approach:

§ Find inner Voronoi nodes of container object

- (See course "Computational Geometry for CG")

- In our case, use approximation by iterative algorithm

§ Place spheres

§ Compute new Voronoi nodes of object plus spheres

G. Zachmann 90Collision DetectionVirtual Reality 31 January 2018WS

Visualization of Our Algorithm

Candidate
Voronoi node

G. Zachmann 91Collision DetectionVirtual Reality 31 January 2018WS

Results

0 100 200 300 400 500
Nr of spheres / 1000

G. Zachmann 92Collision DetectionVirtual Reality 31 January 2018WS

Our Algorithm can be Parallelized for the GPU

G. Zachmann 93Collision DetectionVirtual Reality 31 January 2018WS

Performance of Construction of Sphere Packing

Nvidia Geforce GTX 480

0 20 40 60 80 100
Nr of spheres / 1000

G. Zachmann 94Collision DetectionVirtual Reality 31 January 2018WS

Construction of Hierarchy Over Sphere Packing

§ Based on clustering method
known in machine learning
(batch neural gas clustering)

§ Bears some resemblance
to k-means

§ We can assign "importance"
to spheres

§ Easily parallelizable
on the GPU

§ Naturally generalizes to
higher tree degrees
(out-degree of 4 -8 seems
optimal)

w1

w2

Gabriel Zachmann
Optional

G. Zachmann 95Collision DetectionVirtual Reality 31 January 2018WS

§ BNG hierarchy construction on CPU has complexity of

§ Parallelization of BNG reduces complexity to

O
�
n log n

�

O
�
log2 n

�

Construction time in seconds

0 20 40 60 80 100
Nr of spheres / 1000

30

20

10

0

CPU

GPU

Geforce GTX 780

Gabriel Zachmann
Optional

G. Zachmann 96Collision DetectionVirtual Reality 31 January 2018WS

Examples

G. Zachmann 97Collision DetectionVirtual Reality 31 January 2018WS

Proximity / Penetration Query Using ISTs

§ Works by the standard
simultaneous traversal of BVHs

§ First algo that can compute both
minimal distance or intersection
volume with one unified
algorithm

§ Can compute forces and torques

§ Which can be proven to be
continuous

G. Zachmann 98Collision DetectionVirtual Reality 31 January 2018WS

Computation Timings for the Intersection Volume

Running time (avg / max)

M
ill

is
ec

Gabriel Zachmann
Optional

G. Zachmann 100Collision DetectionVirtual Reality 31 January 2018WS

Parallel Computation Times for Intersection on GPU

Simulation Frame Number

Ti
m

e
/

m
ill

is
ec

Number of spheres / 1000

M
ax

. t
im

e
/

m
ill

is
ec

G. Zachmann 101Collision DetectionVirtual Reality 31 January 2018WS

Penalty Forces for Simulation/Force-Feedback

§ Accumulate sphere-sphere
interaction forces:

§ Linear force:

§ Torque:

§ Forces/torques an be proven to be continuous

fblue =
X

fbluei j

sj si
ni

Cm

Pij

⌧ blue =
X

⌧ bluei j

⌧ bluei j = (Pij � Cm)⇥ fij

fbluei j = Vol(s redj \ sbluei)·nblue
i

Gabriel Zachmann
Optional

G. Zachmann 102Collision DetectionVirtual Reality 31 January 2018WS

Application: Multi-User Haptic Workspace

12 moving objects ; 3.5M triangles ; 1 kHz simulation rate ; intersection volume ≈ 1-3 msec

G. Zachmann 115Collision DetectionVirtual Reality 31 January 2018WS

Master / Bachelor Thesis Topics

§ Perform collision detection using machine learning

§ Use deep learning, or GLVQ (ask Barbara)

§ For riigid objects first, then deformable, or continuous collision detection

